Why are there so many kinds of particles?
The Standard Model provides a description of how particles interact with each other, but physicist John Womersley points out that this model doesn't really tell us why the particles actually exist.
View the Video

We have discovered three families of quarks and leptons, families of fundamental particles that differ only in their masses, which range from less than a millionth of the mass of an electron to the mass of an atom of gold. Just as quantum mechanics led to an understanding of the organization of the periodic table, we look to new theories to explain the patterns of elementary particles. Why do three families of particles exist, and why do their masses differ so dramatically?

Current investigations focus on developing a detailed picture of the existing patterns in the particle world. Remarkable progress has been made, especially in characterizing the quarks. But why are the patterns for leptons and quarks completely different? Detailed studies of quarks and leptons at accelerator experiments will provide the clearest insight into these issues.

Tools for a Scientific Revolution

Physicists have so far identified 57 species of elementary particles. In particular, the Standard Model contains quarks and leptons, grouped into three families that differ only in their masses. Why the pattern of particles is repeated three times with enormous variations in mass but with other properties seemingly identical is an open question. Quantum physics has shown that three families are the minimum necessary to accommodate CP violation in the Standard Model. Such CP violation is necessary for matter to predominate over antimatter in the universe, but its effects observed so far are insufficient to explain this predominance. The current program of experiments, including the LHCb experiment, focuses on developing a detailed understanding of the existing patterns and searching for signs that the patterns of the three families are not identical.

Something is missing in physicists’ understanding of how the universe evolved into its current state. At the big bang, equal quantities of matter and antimatter...
read more

The CDF and D0 experiments at the Tevatron are measuring the properties of the top quark to see if its enormous mass gives it a special role in the particle world. The BaBar and Belle experiments at SLAC and KEK are using their data samples, containing millions of b and c quarks, as well as τ leptons, to make precision measurements of the masses and decay modes of all of these objects, in order to look for subtle deviations from the predicted patterns of their decays. The third- generation particles—top, bottom and tau—offer the best hope for discovery, because their large masses allow them to couple most effectively to undiscovered physics.

BaBar and Belle can study only two types of B mesons, bound states of the bottom quark with up or down quarks. However, many theories suggest significant effects in the bound state with the strange quark, Bs. Physicists are currently studying the properties of the Bs meson at the Tevatron. The LHCb experiment explores the Bs meson with far greater precision.

Properties of individual quarks are experimentally difficult to study, because they are always bound to other quarks. Lattice Computational Facilities offer great promise for the calculation of the effects of the strong interactions. As an example, lattice calculations will provide sufficient precision to extract quark parameters, such as those that describe flavor mixing, from the experimental data.